Does inter-tibiofibular graft still have a role in the treatment of lower-limb non-union?

L. Ferraz*, M. Juvet-Segarra, X. Pocquet, P. Mertl, E. Havet

CHU d’Amiens, 1. place Victor-Pauchet, 80054 Amiens, France

A B S T R A C T

Introduction: Tibial non-union is a complication that poses a real challenge for surgeons. Several forms of treatment, depending on the type of non-union, have been described. The present study sought to assess results for treatment of tibial non-union by inter-tibiofibular graft (ITFG).

Material and method: An exhaustive cohort study was performed on the files of 33 patients: 25 male, 8 female; mean age, 44 years. Twenty cases involved high-energy trauma. Twenty-four were open fractures. Twenty-two concerned diaphyseal fracture, 10 of which were complex segmental. Eleven concerned distal fracture, including 4 complete articular fractures. There were 17 cases of septic non-union. There were no cases of severe bone defect. ITFG was performed at a mean 8.7 months post-trauma, as first-line treatment in 30 cases and in second line in 3.

Results: Thirty-one patients showed bone consolidation, at a mean 7.2 months. The 2 failures resulted from technical error. Trauma kinetics emerged as a risk factor for failure.

Discussion: ITFG remains a useful treatment option in tibial non-union, whether infected or not. The present results are comparable with those of the literature. Although the present series comprised only right tibia, a study of the literature showed that ITFG can treat bone defects up to 4 cm. Functional results showed biotibial joint stiffening, due more to immobilization and non-weight-bearing than to syndesmosis. ITFG thus remains relevant to the treatment of tibial non-union.

Level of evidence: IV, retrospective study.

© 2016 Published by Elsevier Masson SAS.

1. Introduction

Tibial non-union is a major complication of fracture, concerning 10% of cases free of risk factors [1].

Functional and socio-occupational impact is severe. Management frequently includes revision surgery, with uncertain results. Choice of treatment depends on fracture type, primary treatment, septic status, and presence of bone defect or soft tissue lesions. Revision of osteosynthesis and bone grafting may be required.

Inter-tibiofibular graft (ITFG), first described by Milch [2], enables bone healing, rapid resumption of weight-bearing and resolution of septic non-union. It may also be indicated in bone defect up to 5 cm.

The present study assessed bone healing and functional results in ITFG for septic and non-septic tibial non-union.

2. Materials and method

A retrospective exhaustive historic cohort study was performed on medical records.

2.1. Inclusion criteria

The study included all patients treated by ITFG for tibial non-union in the University Hospital Center of Amiens (France) between 1999 and 2006. ITFG is the institution’s reference attitude in tibial non-union, whether septic or not, if inter-fracture distance is ≥2 cm.

Patients managed by any other technique were excluded. In case of bone defect exceeding 2 cm, other techniques were used, including vascularized fibular transfer or bone transport; hypertrophic septic non-union without bone defect managed by primary osteosynthesis by intramedullary nailing was treated by reaming and secondary nailing. One patient was lost to follow-up and excluded from analysis.
2.2. Series

The series comprised 33 patients: 25 male, 8 female; mean age, 44 years (range, 16–74 years). Comorbidities included active smoking (n = 4), diabetes (n = 3), chronic alcoholism (n = 2), asthma (n = 2) and malaria (n = 1). Twenty-two patients were free of comorbidity.

Trauma comprised 25 road accidents, 9 of which involving 2-wheel vehicles, 1 ballistic trauma, 4 falls (2 falling down with osteoporosis, 2 falls of several meters), 2 lawn-mower accidents and 1 skiing accident. Trauma was high-energy in 22 cases. 24 cases concerned open fracture. Fractures were grade 1 on the Cauchois-Duparc classification in 7 cases, grade 2 in 9 and grade 3 in 8. On the AO classification of lower-limb fractures, 22 cases were dia-physal (type 42), including 10 complex segmental (type 42C), and 11 distal (type 43), including 4 complete articular fractures (type 43C). Primary osteosynthesis was by screwed plate in 1 case, intramedullary nailing in 6 and external fixator in 26; 5 of the 6 cases of intramedullary nailing were revised by external fixator: in 2 cases for axial reduction defect in comminutive fracture, and in 3 cases for secondary skin necrosis. In 6 cases, skin flap graft was performed, 5 using a thin skin graft; 21 of the non-unions were atrophic and 12 hypertrophic. Interfragment distances did not exceed 2 cm. 17 non-unions were septic, defined by intraoperative samples positive for ≥1 bacterium.

31 patients showed fibular consolidation; in the other 2, osteosynthesis by screwed plate was performed in the same surgical step as ITFG. ITFG was performed at a mean 8.7 months post-trauma (range, 5–18.5 months). ITFG was first-line treatment in 18 cases, and second-line in 3 cases following failure of decortication graft, or for revision of osteosynthesis with graft or repeat reaming-nailing, respectively.

2.3. Surgical technique

The surgical approach was anterolateral in all cases, and allowed resection of infected tissue. The corticocancellous graft was interposed between tibia and fibula after decorticating the non-union, resecting infected tissue, freshening adjacent cortices and resecting the lateral intermuscular septum so as to position the graft on a muscle bed and impact it stably between tibia and fibula. Osteosynthesis was achieved by tibio-tibial external fixator in all cases. Five surgical samples were systematically taken; if positive, adapted dual antibiotherapy was initiated for 3 months. Weight-bearing was resumed at 8 weeks in all cases.

2.4. Methods of analysis

Surgical data comprised presence and type of immediate post-operative complications, surgical revision, and sequelae. Radiologic consolidation was defined by a bone bridge including 3 of the 4 cortices on at least 2 views. The external fixator was ablated in 2 steps: fixator body, with resumed gait; and pins 1 week later, with radiological and clinical surveillance. Absence of pain and of radiological displacement then defined bone healing. Infection was considered cured in the absence of recurrence of clinical and biological signs at end of antibiotherapy. Consolidation according to prognostic factors was assessed on Student t test, with a significance threshold of 0.05. Functionally, tibiotalar range of motion was assessed on goniometry.

3. Results

Mean follow-up was 11 months (range, 3–84 months). There was no loss to follow-up among included patients.

3.1. Complications

Five patients developed chronic fistulae around the fixator pin orifices; 3 received surgical drainage and curettage of the residual osteitis. The other 2 received local treatment.

There were 2 failures. Retrospective analysis implicated technical error, the grafts being too small to be impacted. Iterative ITFG was performed after consolidation was not achieved by 6 months. Figs. 1–4 illustrate one of these cases in which a second ITFG was needed.

3.2. Functional results

Functionally, 26 patients showed no disabling pain or significant loss of range of motion compared to the contralateral side. Seven showed tibiotalar joint stiffness, with global ankle flexion of 0–5°.

Fig. 1. Example of one case: preoperative control X-ray at 10 months after tibial fracture: absence of consolidation.

Fig. 2. Example of one case: postoperative control X-ray of primary ITFG.
Six of the 7 had worn the external fixator for more than 7 months (range, 7–22 months); in 5 cases the fracture was diaphyseal (AO 42) and in 2 cases distal (AO 43). Synostosis level did not seem to be implicated in stiffness, which involved mid-diaphyseal and distal synostosis equally.

3.3. Radiographic results

Thirty-one patients achieved bone healing, at a mean 7.2 months (range, 3–24 months) post-ITFG.

3.4. Statistical analysis

Mean consolidation time was 7.2 months (range, 3–22 months), and was longer in case of high-energy trauma: mean, 7.9 months (range, 3–22 months) versus 5.6 months (4–8 months); \(P=0.05 \). Closed or aseptic fracture healed faster than open or septic fracture (\(P=0.05 \)). Comorbidities and fracture location did not affect consolidation.

4. Discussion

ITFG provided consolidation at a reasonable interval. Although revision procedures were required, the final success rate was satisfactory. The present results are similar to those in the literature (Table 1). ITFG should therefore recover its place as attitude of choice in both septic and non-septic tibial non-union.

ITFG as initially described using a posterior approach [2] spares the interosseous membrane, which acts as a natural barrier against infection. However, the anterior approach used in the present series allows resection of any infected tissue, promoting eradication; results are as good as with a posterior approach, as confirmed by Rijnberg and van Linge [3].

Functional impact on the tibiotalar joint was studied by Evrard [4], who attributed secondary stiffness to immobilization time rather that surgical technique. In the present study, overall immobilization, including time to primary treatment, seemed to affect outcome, although the present data were not able to confirm this hypothesis and tibiotalar stiffness is likely multifactorial.

The present series comprised only tight non-union, but ITFG may also be indicated in bone defects up to 4–5 cm [5], although consolidation time is liable to be longer and complementary grafting may be required.

The present study was retrospective, with the major drawback of lacking functional scores. Moreover, analysis was hampered by heterogeneity between groups. Although we were unable to demonstrate a significant difference, open fracture and active
smoking looked like prognostic factors, as Adams et al. [6] showed significantly for fresh fracture. The only other risk factor to emerge was trauma severity; power was lacking to analyze other possible factors.

Analysis of the literature confirms the interest of ITFG in septic non-union. It is recommended by Jones and Barnett [7] and Fischer et al. [8] in case of infection. The infection site can be cleared as a preliminary step or in the same step as ITFG, as in the present series. The 2-step approach has the advantage of enabling infection to be controlled ahead of grafting. ITFG can also be applied in a treatment strategy associating the induced membrane technique. Fitoussi et al. [5] compared management of bone defect by isolated ITFG, ITFG associated to induced membrane and isolated induced membrane. All patients showed consolidation, but earlier in the association group; the authors consider isolated ITFG to be indicated only for defects less than 4 cm. Treatment of non-union may use alternative techniques, particularly for large defects: vascularized or non-vascularized bone graft [9,10] or the induced membrane technique [11] can manage defects up to 35 cm. Another solution, is secondary bone transfer, following Ilizarov. By compression-distraction, this technique restimulates osteogenesis, cleanses infection sites and corrects malalignment. Triguë et al. [9] stressed that, while the technique is inexpensive and can fill defects of several centimeters, it requires perfect mastery and patient compliance. There is moreover a non-negligible risk of fracture or non-union at the distraction site. The same concept underlies the elevator technique for limb length loss [12]. At end of bone mobilization, however, Rigal et al. [13] recommend bone graft to achieve final consolidation and avoid iterative fracture.

5. Conclusion

In the therapeutic armamentarium currently available for septic or non-septic non-union, ITFG is a simple and reproducible option when bone defect and treatment delay are within reasonable limits. Trauma kinetics represents the risk factor for failure or complications. In agreement with the literature, the present study showed that ITFG eradicated infection sites and achieved bone healing. The development of novel techniques and progress in microsurgery might have been thought to have made ITFG obsolete, but in our opinion it remains of current interest.

Disclosure of interest

The authors declare that they have no competing interest.

References