Original article

Does the type of sagittal spinal shape influence the clinical results of lumbar disc arthroplasty?

F. Laouissata,*, C. Scemamab, J. Delécrinc

a Hôpital privé de l'Est-Lyonnais, Chirurgie du rachis, Saint-Priest, France
b Hôpital Pitié-Salpêtrière, Paris, France
c Clinique chirurgicale de l'Hôtel-Dieu, CHU de Nantes, Nantes, France

1. Introduction

Lumbar disc arthroplasty seems to be an alternative to arthrodesis in the treatment of certain cases of discogenic low back pain. The main advantage of lumbar total disc replacement (LTDR) is to restore the range of motion of the operated intervertebral segment [1]. In contrast to lumbar arthrodesis, this principle of restoring range of motion stipulates functional restoration for LTDR, aiming to prevent degeneration of the adjacent segments.

In certain studies, the therapeutic success of LTDR has been conditioned by radiological parameters, such as the preoperative MRI aspect of the vertebral endplates [2], the presence or absence of facet joint osteoarthritis [3–5], or the postoperative positioning of the implant [6,7].

Similarly, it has been suggested that the results of LTDR depended on morphological parameters. The influence of the type of sagittal curvature (referring to the Roussouly classification [8,9]) has only been studied very recently. Dividing sagittal curvature into four types, the Roussouly classification describes the degenerative progression specific to each type of lumbar segment based on a biomechanical approach [10]. Type 1, a short lower lumbar hyperlordosis, caused by a small-radius inferior arch, concentrates the maximum stresses on the zygapophyseal facets of the two last mobile segments L4–L5 and L5–S1. Type 2, with flat lumbar curvature, is characterized by a greater range of motion, while Type 3, a long lower lumbar hyperlordosis, is less flexion and rotationally stable than the other types. Finally, Type 4, a flat lumbar curvature, associated with a high lumbar lordosis, is characterized by a greater range of motion.

We have conducted a prospective study to evaluate the influence of the sagittal shape on the clinical results of lumbar total disc replacement (LTDR).

Keywords: Lumbar total disc replacement, Clinical results, Sagittal spinal shape, Hyperlordosis, Roussouly classification

ARTICLE INFO

Article history:
Received 31 January 2016
Accepted 25 May 2016

Keywords:
Lumbar total disc replacement
Clinical results
Sagittal spinal shape
Hyperlordosis
Roussouly classification

ABSTRACT

Introduction: It has been suggested that the indication for lumbar total disc replacement (LTDR) takes into account the local parameters, such as the type of disc disease demonstrated on MRI and the presence or absence of facet joint osteoarthritis. The type of preoperative sagittal curvature could also be taken into account. This study reports the clinical results of LTDRs depending on the type of sagittal spinal alignment.

Material and methods: Eighty-five patients were included in this prospective study, with a mean age of 41.7 years (range, 27–56 years). The clinical analysis took into account the lumbar VAS, the Oswestry Disability Index (ODI), and the preoperative frequency of painkiller use, at 1 year and at the last follow-up. The satisfaction index, return to work, and willingness to undergo the same treatment were also collected. The radiological study included the analysis of lumbar-pelvic parameters to distribute the patients according to the Roussouly classification.

Results: The mean follow-up was 59.1 months (range, 14–96 months). The type 1 group included four cases. Reduction of the VAS, the ODI score, and the frequency of painkiller use at the last follow-up were significant in type 2 and 3 patients, and non-significant for type 4. Eighty-five percent of type 2 patients and 87.5% of type 3 patients were satisfied or very satisfied with the surgery versus only 68% of the type 4 patients. In addition, 63% of the type 4 patients declared they would be willing to undergo the same treatment again versus 85% of the type 2 patients and 82.5% of the type 3 patients. It should also be noted that 67% of the patients in this series returned to work.

Discussion and conclusion: This study underscores the influence of the type of sagittal curvature on the clinical results of LTDR, with type 4 patients showing inferior clinical results because of a higher rate of residual lower back pain. The indication in LTDR should be reconsidered for discogenic lower back pain in type 4 patients.
lordosis, is predisposed to disc disease and herniated disc, notably in young subjects. Type 3, the most frequent, is balanced, and type 4 with substantial lumbar lordosis is subject to facet joint osteoarthri-
tis, canal stenosis, and degenerative spondylolisthesis.

Two studies reported variable results according to the sagittal
curvature. Based on a radiological study, Pellet et al. [11] reported
that types 3 and 4 may obtain better restoration of the sagittal pro-
file following an L5—S1 arthrodesis compared to disc arthroplasty
at the same level, but the clinical results were not compared. With
a small number of cases, Strube et al. [12] suggested a possible
contraindication to lumbar disc arthroplasty at L4—L5 and L5—S1
for types 1 and 4, based on inferior clinical results. In both stud-
ies, type 4 appears to be a sagittal profile correlated with inferior
clinical or radiological results.

The present prospective study aimed to assess the clinical and
functional results obtained over the medium term after LTDR in
relation to the type of sagittal profile of the patients’ lumbar seg-
ment, to select the sagittal spinal shape that may be determinant
in the indication for LTDR.

2. Materials and methods

This was a prospective study on 80 patients who underwent
LTDR between L2 and S1, recruited from January 2004 to January
2014. All patients presented a clinical history of low back pain
resisting to a well-conducted conservative treatment for at least
6 months causing a measured functional handicap before being
included in the study. They also presented radiological proof of disc
degeneration (standard X-ray, CT, MRI, and/or discography).

The inclusion criteria were a non-operated degenerative disc
disease (DDD) or a DDD with history of nucleotomy or discectomy.
Patients were excluded if they presented non-disocogenic low back
pain, multiple disc degeneration, scoliosis or spondylolisthesis, ad-
vanced facet joint osteoarthritis, lumbar canal stenosis, a pos-
terior postoperative defect (laminecomy or facetectomy resulting
in loss of stabilizing components), a disc sequestrum with a hernia
that could not be removed via an anterior approach, osteoporosis
or metabolic bone disease.

Three generations of mobile-nucleus disc prosthesis were
implanted via the left or right retroperitoneal approach by a senior
operator following the same protocol [13].

Patient selection and preoperative assessment were conducted
by the surgeon who placed the implants. Digital static profile X-rays
of the entire spine, with visualization of the femoral heads, were
taken preoperatively for the sagittal morphological study of spine
curvature with reference to the Roussouly classification [8] (Fig. 1).
The digital X-rays were analyzed using SpineViewR (Surgiview,
Paris, France). All the patients signed an informed consent form

![Fig. 1. Roussouly’s four types of sagittal curvature.](image)

for use of their clinical and radiological data for this observational
study.

The main endpoint was functional symptoms, whose character-
istics (lumbar visual analog scale [VAS] and the Oswestry Disability
Index (ODI)) were collected from self-administered questionnaires
completed before surgery, at 1 year postoperative, and at the last
follow-up. The analogic pain scale or the lumbar VAS were scored
from 0 to 10. The ODI questionnaire, expressed as percentages, was
a functional score assessing functional incapacity comprising ten
questions with six responses, each scored from 0 to 5 in increasing
order for functional discomfort. Also, a satisfaction questionnaire
(scored as very satisfied, satisfied, dissatisfied or very dissatis-
ified with the surgery) and a final satisfaction index questionnaire
(the patients responded to the question “if the surgery had to be
redone, would you do it?”) were completed at the last follow-up.
The secondary endpoints were postoperative complications, non-
opioid analgesic use quantified in terms of frequency (continuous,
occasional, or none), return to work (working, on sick leave, or
not working) at the last follow-up compared to the preoperative
period (Fig. 2). The results were analyzed by an author who was
not involved in patient selection, the surgery, or the postoperative
care.

The qualitative variables were analyzed using the Fisher test.
The Wilcoxon and t-test were used to analyze the means.

3. Results

Eighty-four patients were operated between L2 and S1, from
January 2004 to January 2014. The mean age was 41.7 years
(range, 27–56 years). There was a slight predominance of females
with 46 females versus 34 males. The mean follow-up was
59.1 ± 24.7 months. None of the patients was lost to follow-up, one
patient died, and one patient refused the clinical follow-up but
continued to respond to the self-administered questionnaires.

The majority of the LTDRs were implanted at the L4—L5 and
L5–S1 levels (41% and 57%, respectively). LDTR at the L2–L3 and
L3–L4 levels was marginal, with one prosthesis for each level. The
distribution of implantation levels is summarized in Table 1.

![Fig. 2. Histogram illustrating distribution of the occupational activity level of the
operated patients, preoperative and at different follow-up times.](image)
Table 1
Distribution of implantation levels.

<table>
<thead>
<tr>
<th>Levels</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2–L3</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>L3–L4</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>L4–L5</td>
<td>35 (41%)</td>
</tr>
<tr>
<td>L5–S1</td>
<td>49 (57%)</td>
</tr>
<tr>
<td>Operated levels (single:double)</td>
<td>74:6</td>
</tr>
</tbody>
</table>

Table 2
Distribution of patients according to type of overall lordosis.

<table>
<thead>
<tr>
<th>Type</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>4 (5%)</td>
</tr>
<tr>
<td>Type 2</td>
<td>20 (25%)</td>
</tr>
<tr>
<td>Type 3</td>
<td>40 (50%)</td>
</tr>
<tr>
<td>Type 4</td>
<td>16 (20%)</td>
</tr>
</tbody>
</table>

Table 3
Progression of lumbar VAS versus type of lordosis.

<table>
<thead>
<tr>
<th>Type</th>
<th>n</th>
<th>Preop VAS</th>
<th>VAS 1 year</th>
<th>VAS last follow-up</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>20</td>
<td>6.7 ± 1.6</td>
<td>2.9 ± 2.5</td>
<td>3.1 ± 2.6</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Type 3</td>
<td>40</td>
<td>7.2 ± 2.2</td>
<td>2.1 ± 2.03</td>
<td>2.2 ± 2.4</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Type 4</td>
<td>16</td>
<td>6.3 ± 2.1</td>
<td>4.7 ± 2.2</td>
<td>4.2 ± 2.7</td>
<td>= 0.06</td>
</tr>
</tbody>
</table>

* No mean because of low number of cases.

Table 4
Progression of ODI versus type of lordosis.

<table>
<thead>
<tr>
<th>Type</th>
<th>n</th>
<th>Preop ODI</th>
<th>ODI 1 year</th>
<th>ODI last follow-up</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>20</td>
<td>48% ± 11%</td>
<td>22% ± 17%</td>
<td>24% ± 18%</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Type 3</td>
<td>40</td>
<td>50% ± 12%</td>
<td>21% ± 16%</td>
<td>23% ± 17%</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Type 4</td>
<td>16</td>
<td>48% ± 9%</td>
<td>37% ± 19%</td>
<td>38% ± 23%</td>
<td>= 0.23</td>
</tr>
</tbody>
</table>

* No mean because of low number of cases.

The distribution of the patients according to their type of lumbar spine curvature is summarized in Table 2. Half of the patients were in Roussouly group 3. Only four patients were classified as type 1.

No significant difference was found between the different types in terms of the preoperative lumbar VAS and ODI scores (P < 0.3). The reduction in VAS at 1 year postoperative and at the last follow-up compared to the preoperative score was significant in types 2 and 3 and non-significant for type 4 (Table 3).

Reduction of the ODI score at 1 year postoperative and at the last follow-up compared to the preoperative score was significant in types 2 and 3 and non-significant for type 4 (Table 4).

Reduction of the frequency of painkiller use at 1 year postoperative and at the last follow-up compared to the preoperative score was significant in type 2 (P = 0.003 and P = 0.004, respectively) and type 3 (P = 0.004 and P = 0.001) and non-significant for type 4 (P = 0.19 and P = 0.1, respectively) (Table 5).

At the last follow-up, no significant difference was demonstrated between the different satisfaction rates with the different types of lordosis (P = 0.23 and P = 0.43). The data are summarized in Tables 6 and 7.

No infectious complication was noted. Seven patients (8.7%) reported problems related to hypogastric plexus involvement, including two cases of retrograde ejaculation, at the beginning of the experiment. At the last follow-up, these problems persisted in two patients. Six complications (7.5%) required reintervention: two patients (2.5%) for superficial hematoma, two patients (2.5%) for implant migration at the beginning of the experiment with an anchorage system that was being developed at the time, and two patients (2.5%) considered in therapeutic failure underwent arthrodesis.

4. Discussion

This study argues in favor of the influence of morphological parameters, including the type of sagittal curvature with reference to the Roussouly classification [8,9], on the clinical results of LTDRs. The clinical objective of this study was to select the types of lumbar lordosis that appeared determinant in the indication for LTDR.

Recent studies have raised the question of whether Roussouly type 4 has inferior clinical or radiological results. In a morphological and mechanical approach to lumbar and degenerative lumbar discopathy, Roussouly et al. [8] argue that type 4 patients are predisposed to facet joint osteoarthrosis and that disc replacement within an intervertebral segment alone is a debatable therapeutic choice. Based on a radiological study with no clinical correlation, Pellet et al. [11] reported that L5–S1 anterior lumbar intervertebral fusion (ALIF) restores a better sagittal profile than disc arthroplasty at the same level, for types 3 and 4. With a small number of cases, Strube et al. [12] suggested a possible contraindication for types 1 and 4 for lumbar disc arthroplasty at the L4–L5 and L5–S1 levels, based on inferior clinical results at the last follow-up. The strength of our study is that it analyzed functional results of LTDRs in type 4 cases with a larger number of patients (n = 16).

Most authors [2,14–26] reported improvement in the postoperative ODI and lumbar VAS scores after LTDR. The present study specifically analyzed the progression of the ODI score as related to the type of sagittal curvature. For type 4, the higher rate of residual disability than the disability rate for types 2 and 3 is coherent with the lumbar VAS values and could result from residual low back pain stemming from joint facets. For a low number of type 4 cases (n = 6), Strube et al. [12] reported a mean ODI value (41%) significantly lower than the ODI for types 2 and 3 (16% and 17.7%, respectively) at 24 months of follow-up. For Strube et al., the mechanical overload of the joint facets in type 4 is responsible for facet joint osteoarthrosis and spinal stenosis, and explains greater residual disability than in types 2 and 3, in agreement with the results of the present study.

Lumbar disc arthroplasty seems to provide high satisfaction for types 2 and 3. For type 4, the lower satisfaction rate is coherent

Table 6
Satisfaction index according to type of sagittal curvature (type 1: not shown because of low number of cases).

<table>
<thead>
<tr>
<th>Type</th>
<th>Very satisfied/satisfied (%)</th>
<th>Dissatisfied/very dissatisfied (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>Type 3</td>
<td>87.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Type 4</td>
<td>68</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 5
Progression of painkiller use frequency versus type of sagittal spinal shape at 1 year and last follow-up (type 1: not shown because of low number of cases).

<table>
<thead>
<tr>
<th>Type</th>
<th>Preop (%)</th>
<th>1 year (%)</th>
<th>LFU (%)</th>
<th>Preop (%)</th>
<th>1 year (%)</th>
<th>LFU (%)</th>
<th>Preop (%)</th>
<th>1 year (%)</th>
<th>LFU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2</td>
<td>Continuous</td>
<td>60</td>
<td>15</td>
<td>20</td>
<td>62.5</td>
<td>30</td>
<td>25</td>
<td>87.5</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Sometimes</td>
<td>35</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>17.5</td>
<td>15</td>
<td>12.5</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>Never</td>
<td>5</td>
<td>55</td>
<td>60</td>
<td>7.5</td>
<td>52.5</td>
<td>60</td>
<td>0</td>
<td>12.5</td>
</tr>
</tbody>
</table>

LFU: last follow-up.
with the inferior clinical results in terms of pain and disability, and with a substantial analgesic intake. The results of our series in terms of satisfaction score are comparable to those reported in the literature: Park et al. [22] reported an 88% satisfaction rate for a retrospective series of 35 patients. Guyer et al. [19] and Blumenthal et al. [27] reported 78% and 73.7% satisfaction rates, respectively, based on prospective, randomized, multicenter studies comparing the results of lumbar disc arthroplasty and fusion at the same level. To our knowledge, no studies have reported on satisfaction in relation to the type of sagittal spinal curve.

This descriptive study is mainly limited by its low level of evidence and by the low number of type 1 cases (four cases). However, the patients’ mean age in this series was 41.7 years, comparable to the different series in the literature [14,16,20,21,25,28–34], and the mean follow-up was 59.1 ± 24.7 months with patients operated on at the beginning of the experiment having 8 years of follow-up [28,29,31,33,35].

In conclusion, this study reports inferior clinical results for type 4 compared to types 2 and 3 during LTDR for invalidating degenerative discopathies. The facet joint mechanical overload due to lumbar hyperlordosis in type 4 cases could explain these inferior clinical results. In light of these results, the indication for lumbar disc arthroplasty for type 4 discogenic low back pain seems highly debatable.

Disclosure of interest

Dr. Laouissat and Dr. Schematic declare that they have no competing interest. Dr. Delérec receives royalties from LDR medical company, outside the submitted work.

References