Original article

Is anterior glenoid bone block position reliably assessed by standard radiography? A cadaver study

P. Clavert a, b, *, G. Koch a, L. Neyton c, P. Metais d, J. Barth e, G. Walch c, L. Lafosse f, the French Arthroscopic Society

a Institut d’anatomie normale, FMTS, faculté de médecine, 4, rue Kirschleger, 67085 Strasbourg cedex, France
b Service de chirurgie du membre supérieur, CCOM, avenue Baumann, 67400 Illkirch, France
c Centre orthopédique Santy, hôpital privé J.-Mermoz (Ramsey-GDS), 24, avenue Paul-Santy, 69008 Lyon, France
d Clinique La Châtaigneraie, 63110 Beaumont, France
e Centre ostéo-articulaire des Côtes, parc Sud Galaxie, 5, rue des Tropiques, 38130 Échelles, France
f Clinique générale d’Annecy, 74000 Annecy, France

Article history:
Received 10 July 2016
Accepted 20 August 2016

Keywords:
Imaging
Scapula
Coracoid transfer
Position
Fusion
Bernageau

ABSTRACT

Background: Standard radiography with an antero-posterior view and Bernageau’s glenoid profile view is the method most widely reported in the literature to assess coracoid bone block position and fusion.

Objective: The aim of this cadaver study was to determine whether the antero-posterior and Bernageau’s radiographs provide a reliable and reproducible evaluation of the position of a coracoid bone block and its fixation screws.

Method: An isolated scapula showing no evidence of osteoarthrits or other abnormalities was used. The coracoid process was transferred to the anterior glenoid rim. Fixation was with two slightly diverging malleolar screws, chosen of different sizes for ease of identification. Computed tomography (CT) was performed as the reference imaging technique. The standard radiographs were then obtained, using fluoroscopy to accurately position the scapula for the antero-posterior and Bernageau’s views. This position was defined as 0°, and radiographs were taken at angles of 5°, 10°, and 15° in all three planes. All radiographs were then exported to OsiriX for analysis. We measured the angles formed by the screws and the glenoid surface, as well as bone block position and overhang. Finally, we used 1-mm thick disks to evaluate bone-to-bone contact.

Results: No correlations were found between values by CT and by standard radiography (both views) for the screw angles or overhang. A space ≤ 1 mm between the neck of the scapula and the bone block was not visible on the standard radiographs in any of the positions.

Conclusion: Standard radiography does not provide an accurate analysis of bone block position or bone-to-bone contact. CT is needed to assess bone block and screw position and bone-to-bone contact.

Level of evidence: Level III.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Standard radiography has long held pride of place for evaluating bone block position and fusion after the Latarjet procedure [1–6]. An antero-posterior (AP) view and glenoid profile view as described by Bernageau are used. The precision and accuracy of measurements made on standard radiographs depend on the position of the scapula relative to the film, which varies significantly with the position of the patient, position of the arm relative to the torso, and direction of the X-ray beam. Ideally, fluoroscopy should be used to position the patient for the double-oblique AP view and Bernageau’s view. Nevertheless, this precaution is omitted in some centres. Errors and poor reproducibility may therefore occur when assessing bone block position and screw direction in the three planes.

The hypothesis tested in this cadaver study is that standard radiography accurately evaluates bone block and screw position, i.e., provides measured values similar to those obtained using computed tomography (CT). The primary objective of this study was to determine whether the strict AP view and Bernageau’s and Lamy’s lateral views provide reliable information on bone block...
position. The secondary objectives were to assess the reproducibility of bone block and screw position measurements and to assess contact between the deep surface of the block and the neck of the scapula.

2. Material and methods

2.1. Preparation of the specimen

An isolated scapula from a donor was used. There was no evidence of osteoarthritis or other abnormalities. All soft tissues were removed. A bony Bankart-type lesion was then created in the anterior-medial border of the glenoid cavity, shifting the neck to the vertical direction [7]. The coracoid process was cut at its base. The horizontal limb of the coracoid process was then transferred to the glenoid rim, after smoothing its undersurface to produce a perfectly level surface. Fixation was with two slightly diverging malleolar screws, of different sizes for ease of identification (34 mm and 36 mm) (Fig. 1).

All standard radiographs were obtained during a single session to ensure that the position of the scapula and its distance from the tube remained unchanged.

2.2. CT assessment of bone block position and contact

CT was performed to serve as the reference (Siemens Medical, Malvern, PA, USA; 130 kV and slice thickness 1.0 mm). The scapula was placed horizontally on the table to replicate the supine position. Reconstructions were produced from native axial images. Finally, we used disks measuring 1, 2, and 3 mm in thickness to assess contact between the bone block and neck.

The images were exported in DICOM format (Digital Imaging and Communications in Medicine) for processing and analysis using OsiriX software (version 4.1.2, 32 bits). We used the reconstruction tools to obtain the AP view (oblique sagittal view) that served to define the vertical axis of the glenoid cavity and the equator. The plane of the glenoid cavity was defined on the native slices.

We measured the following on all views:

- angle formed by each screw and the glenoid surface (on the coronal and sagittal slices);
- position of the bone block (on the AP view relative to half the glenoid surface area) and overhang relative to the glenoid rim (axial slice);
- contact, as the distance between the undersurface of the coracoid process and the neck of the scapula (axial slice).

2.3. Definitions of radiographic incidences and measurements

The scapula was positioned on the radiography table and held in place using radiolucent blocks (Fig. 1).

2.3.1. AP view

A double-oblique AP view was taken, with lateral obliquity (obtained by turning the scapula about 30° towards the side to be studied, so that the beam was tangent to the anterior and posterior glenoid borders and the gleno-humeral joint space was visible) and cranio-caudal obliquity (obtained by inclining the tube downwards by 25° to avoid bony superimpositions in the subacromial space).

2.3.2. Lamy's lateral view (scapular Y view)

The beam is parallel to the long axis of the supra-spinatus muscle, tangential to the body of the scapula, and horizontal; fluoroscopy is needed to position the scapula correctly for this view.

2.3.3. Bernageau's view (glenoid profile view) [8–10]

A true lateral view is obtained when the inferior part of the anterior glenoid rim projects anteriorly to the rounded image formed by the upper part of the anterior glenoid rim.

The above-described positions were taken as the reference positions, i.e., 0°. Radiographs were then obtained after adding 5°, 10°, and 15° of anteversion, retroversion, flexion, and extension to the 0° position, for both the true AP and Bernageau’s views (Figs. 2 and 3). The radiographs were digitised and exported to OsiriX. Compared to the 0° position, rotations were given a positive sign for anteversion and flexion and a negative sign for retroversion and extension.
2.4. Measures

As with the CT images, we used the OsiriX tools to measure angles relative to the plane of the glenoid (axial CT slices and Bernageau's view) or to the main axis of the glenoid ("AP" view provided by the reconstructed sagittal CT images and Lamy's view). Bone block position was estimated relative to the height of the glenoid (true AP view), according to screw position relative to a mark placed at half the height of the glenoid. Each measurement was repeated three times, during three different measurement sessions performed by the same observer at intervals of at least 1 week. Thus, nine values were collected for each parameter. They were compared to the reference value obtained using CT. The repeated measures served to compute intra-observer correlations. Finally, on the true Bernageau's view, we used the disks of various thicknesses to assess contact between the bone block and neck.

2.5. Statistical analysis

XStat software (Addinsoft, Paris, France) was used for all statistical analyses. Spearman's correlation coefficient (r) was computed to assess intra-observer reproducibility and interpreted according to Landis, as follows: <0.01, very slight; 0.01–0.2, slight; 0.21–0.4, fair; 0.41–0.6, moderate; 0.61–0.8, substantial; and 0.81–1.00, almost perfect or perfect. To compare variables between two independent groups, the Mann–Whitney test was applied, and P values <0.05 were considered significant.

3. Results

3.1. Reproducibility of measurements of screw angle relative to glenoid surface

With all the incidences studied and both screws, correlations were consistently poor. Thus, r varied from 0.2857 to 0.3721.

3.2. Screw angle relative to glenoid surface on axial views

On CT images, the screw-glenoid surface angle was 5.2° for the top screw and 8.1° for the bottom screw. On Bernageau's view, the mean angle was 1.6° ± 1.15° for the top screw and 7.6° ± 3.02° for the bottom screw, for all inclinations pooled. The correlations between values by CT and Bernageau's view were statistically significant (P=0.001 for the top screw and P=0.01 for the bottom screw). The null hypothesis was rejected: no correlation was demonstrated.

Table 1 reports the variations in measured values induced by changing the position of the scapula relative to the X-ray source when obtaining Bernageau's view. With the other views, the variations were even greater (consistently >50%) and are therefore not reported.

3.3. Assessment of bone contact between the coracoid and neck

A space of 1 mm or less was not visible on the true Bernageau's view. The CT images, in contrast, consistently provided an accurate assessment of bone contact (Fig. 4).

4. Discussion

Although Bernageau's view is a validated method of estimating glenoid bone defects [3,10,11], its usefulness for assessing bone block position, screw fixation, or fusion. This fact is ascribable
Table 1
Comparison of parameter values measured on the true Bernageau’s view and on the views with 5°, 10°, or 15° of variation in the other two planes.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Min/max</th>
<th>SD</th>
<th>Coefficient of variation</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of top screw (mm)</td>
<td>29.08</td>
<td>18.9/38.3</td>
<td>8.01</td>
<td>0.67</td>
<td>0.024</td>
</tr>
<tr>
<td>Size of bottom screw (mm)</td>
<td>27.91</td>
<td>14.6/39.2</td>
<td>8.69</td>
<td>0.31</td>
<td>0.006</td>
</tr>
<tr>
<td>Axis of top screw (°)</td>
<td>1.63</td>
<td>0.1/13.7</td>
<td>1.15</td>
<td>0.7</td>
<td>0.001</td>
</tr>
<tr>
<td>Axis of bottom screw (°)</td>
<td>7.63</td>
<td>3.8/13.5</td>
<td>3.01</td>
<td>0.4</td>
<td>0.01</td>
</tr>
<tr>
<td>Screw divergence (°)</td>
<td>8.6</td>
<td>6.4/13.1</td>
<td>2.14</td>
<td>0.25</td>
<td>0.51*</td>
</tr>
</tbody>
</table>

* Only value that does not reject the null hypothesis, indicating that inclination had no influence.

Fig. 5. Bernageau’s view. Variations in measured screw position induced by a 5° difference in X-ray beam inclination. (longueur = length).

to the various deformities induced by two-dimensional projection of rays travelling along different directions (Figs. 5 and 6).

Bernageau described the glenoid profile view in 1967. This view is designed to provide the best possible evaluation of lesions in the anterior border of the lower glenoid, such as bony Bankart lesions [8,9]. The patient stands with the arm maximally elevated. The source is directed 20° to 30° caudally. This view isolates the projection of the lower glenoid rim, thus enabling the detection of bony lesions produced during recurrent shoulder dislocation. The acquisition of Bernageau’s view depends heavily on the expertise of the radiologic technologist, and the possibility of human bias should be considered when interpreting the image.

As demonstrated by Edwards et al. [3], Bernageau’s view fails to show defects in the lowest part of the glenoid. Consequently, the evaluation of fragment size is dependent on the position of the fragment in the cranial-caudal direction. Similarly, the position of the bone block and inclination of the fragment may hinder the assessment of fragment size, bone block position, and relative screw position.

Fig. 6. Example of a postoperative workup: two antero-posterior views were taken with different degrees of gleno-humeral rotation.
This study has several limitations. The scapula used for CT and radiographic imaging was initially intact, and a limited and highly standardised lesion was then created in the anterior glenoid rim. Furthermore, errors may occur when determining screw position on the CT images, since the scapula must be reconstructed and repositioned in the three planes to allow reliable and reproducible measurements [10]. OsiriX software provides reliable measurements and has therefore been used in many published studies. All reconstructions were done by the same person, who was thoroughly familiar with OsiriX. The measurements were performed manually, by an observer who was aware of the experimental conditions and relative position of the scapula. Consequently, errors may have occurred in the positioning of the landmarks. Finally, we did not assess inter-observer reproducibility of the various measurements, given the very low inter-observer reproducibility ($r = 0.2857$ to $r = 0.3721$).

5. Conclusion

Standard radiographs fail to provide a detailed and reproducible evaluation of bone block position and bone contact after the Latarjet procedure. Nevertheless, they contribute to the postoperative follow-up, for several reasons:

- the AP view can show a fracture of the bone block and perhaps also an excessively medial position of the screws (risk of injury to the supra-scapular nerve at the notch);
- Bernageau’s view provides a rough estimate of bone block position relative to the joint space (overshoot, flush, or excessively medial) and identifies loose non-union.

Thus, combining the AP and Bernageau’s views enables the diagnosis of the main problems with bone block and screw position. In contrast, CT seems required to evaluate bone block and screw position, as well as bone contact (provided a standardised image interpretation protocol is followed). CT is particularly helpful in centres where fluoroscopy cannot be performed to check patient position before taking the radiographs.

Disclosure of interest

The authors declare that they have no competing interest.

References