
J. García Naranjo, S. Barroso Rosa, J.F. Loro Ferrer, J.M. Limiñana Cañal, E. Suarez Hernández

Vecindario Rehabilitation centre, Santa Lucía, Gran Canaria Island, Spain
Orthopaedics department, CHUIM, Orthopaedic research institute of Queensland (ORIOQ), Las Palmas de Gran Canaria, Spain
Clinical sciences department, university of Las Palmas de Gran Canaria, Spain
Rehabilitation department, CHUIM, Las Palmas de Gran Canaria, Spain

Abstract

Introduction: Whiplash associated disorders are currently a common musculoskeletal problem. Besides the high incidence in western countries, the costs derived from prolonged treatment and medicolegal compensation, make this entity a challenging problem for clinicians and insurance companies. To date, no conservative treatment has shown clear superiority in the management of acute cases.

Hypothesis: Percutaneous needle electrolysis (PNE) is an effective approach for the treatment of Quebec type II acute whiplash syndrome (AWS). PNE consists in the application of brief galvanic currents into a damaged structure, producing a local controlled inflammatory response, with subsequent tissular healing enhancement.

Materials and methods: One hundred AWS patients were randomized into: (a) standard physiotherapy intervention for AWS; (b) a standardized PNE protocol for AWS. Both groups were assessed for treatment outcome at the 5th week mark.

Results: Both groups showed a statistically significant improvement according to the Northwick Park Neck Questionnaire, visual analogic scale and pressure pain threshold. The improvement was similar in both groups, except for the pain pressure threshold, with a 56.6% reduction vs. 44.4% reduction in favour of the PNE group (P = 0.035). In addition, the physio group consumed a mean treatment time of 20 hours, while the PNE intervention averaged less than 1 hour in total.

Discussion: PNE can be considered as an effective treatment option for AWS. Importantly, the technique is highly cost-effective, with limited equipment required and a notable treatment time reduction, compared to more comprehensive physiotherapy protocols.

Type of study: Randomized controlled trial.
Level of proof: 1b.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Background

Whiplash associated disorders (WAD) are a common musculoskeletal disorder in recent times. This entity encompasses a range of injuries to the neck area, generally occurred in low-energy traffic collisions and sporting activities [1]. The forces involved in the collision result in a sudden passive extension of the neck, followed by a sudden flexion, in a whip-like fashion. Most patients suffer mild limited injuries, but in severe cases fractures and/or neurological damage can be identified, many times with subsequent chronicity of the symptoms [2].

Despite the high incidence, the treatment of acute whiplash syndrome (AWS) remains controversial. In severe cases, where specific structures are damaged, they can be identified and individually treated (e.g.: treatment of cervical fractures or dislocations). Fortunately, in the vast majority of cases there are no major identifiable injuries, and symptoms prevail over physical examination signs or complementary test findings. In these cases, conservative treatment is generally indicated; here is where the consensus ends. There is a vast list of treatments and interventions for AWS, under the flag of “conservative measures”, and to date none of them has shown clear superiority [3].
There is little available evidence to recommend a certain conservative treatment for AWS cases. Several Cochrane Library systematic reviews have failed to find supportive evidence for the most common therapies; Gross concluded there is no evidence of effectiveness of patient education in WAD [4], while a wider review of all conservative modalities by Verhagen resolved: “clearly effective treatments are not supported at this time for the treatment of acute, subacute or chronic symptoms of whiplash-associated disorders” [3]. Other works found little or uncertain evidence of effectiveness for mobilisation-manipulation [5], electrotherapy [6] or acupuncture [7,8] in the treatment of acute neck pain. An additional review about physiotherapy for WAD by Michaleff showed similar conclusions, highlighting the unclear role of these interventions [9].

AWS is a demanding clinical problem, with cervical pain and often-associated brachialgia or vertiginous syndrome, which causes an important reduction in the functional level of the affected. Moreover, the legal implications commonly involved, make the treatment and evaluation of this syndrome specially challenging. Insurance companies spend millions of dollars every year to treat and compensate those affected by WAD [1,7]. Effective treatments, which could help patients to overcome the symptoms and resume their usual activities in the shortest time, are highly sought-after from both clinicians and insurance corporations, and due to the lack of clearly superior options, research on new alternatives is desirable.

Percutaneous needle electrolysis (PNE) is a relatively novel technique described by Sanchez Ibanez in Spain in the early 2000s [10], which is rapidly spreading in Western Europe. This technique consists in the application of a brief galvanic current into a desired musculoskeletal target structure, trough the placement of percutaneous acupuncture-like needles. The evidence supporting this technique is progressively growing; there is data of the histologic response generated by PNE [11], as well as data supporting good clinical outcomes in chronic and overuse injuries such as patellar tendinitis, tennis elbow or athletic pubalgia [12–15].

The clinical experience from the authors has lead to the impression that not only chronic conditions would have good response to PNE, and for that reason the present study was designed. We have been involved in the evaluation and treatment of AWS patients during the last 15 years. PNE has been a valuable tool for us in the treatment of other musculoskeletal pathologies, so we hypothesized it may be a useful for AWS cases. One of the most characteristic features of PNE is its short application time; most protocols for most conditions consist in 2–3 weekly sessions with a duration of 5 minutes approximately. The technique is not expensive (limited equipment required, our generator is priced 2700 €, with no additional costs for disposables rather than acupuncture needles) (Fig. 1), is easy to learn and teach (periodic formation courses offered by the Spanish Official Physiotherapists College, nationwide), and is generally well tolerated by the patient. This combination makes PNE a good candidate to become a first line option for the treatment of AWS, should its efficacy be proven.

The chosen target for this PNE study is levator scapulae muscle (LS). LS has been identified in many studies as one of the most commonly affected structures of the neck in WAD [16–19]. Our experience is that local treatment of the LS is generally indispensable to decrease pain in WAD affected patients, by means of massage, stretching, electrotherapy and/or topical analgesia. Thus, local application of PNE in this location was selected, with a specific position for needle placement in the scapular insertion of the muscle. To perform our study, the most painful side of the neck was determined and treated trough PNE currents.

In this paper, we present the results of a prospective randomized trial to assess the effectiveness of PNE versus a standard physiotherapy treatment in patients affected by AWS after a recent traffic accident.

2. Methods

The study was designed by the CHUMI Rehabilitation Department (Las Palmas de Gran Canaria, Gran Canaria Island, Spain) and developed in the Vecindario Rehabilitation Centre (Santa Lucia, Gran Canaria Island, Spain). Approval was obtained from the Regional Ethics Committee. Participants were recruited from over 18s patients presenting from 1st of March to 31st of May 2016 with neck pain secondary to AWS after a recent traffic accident, and classified as grade II in the Quebec classification (neck pain and stiffness, no neurological symptoms, no bony injuries). Patients with previous neck pathology or surgical interventions, psychiatric conditions or language barriers were excluded. In addition, patients with generic contraindications for PNE were also excluded: pacemaker, pregnancy, local infection or malignant tumours and local or systemic cutaneous disease. During the recruitment phase, 9 patients were excluded from the trial due to exclusion parameters, and 7 refused to participate in the trial.

Candidates matching the criteria were offered to voluntarily participate in the trial. They were informed that by participating, they would receive one of two different treatment options in the centre, but no further details were provided to avoid performance bias. Subsequently, 100 patients were randomized into group A, a standardized physiotherapy intervention for AWS and group B, a standardized PNE protocol. Patients chose one from 100 identical envelopes in a box, 50 with an A card inside and 50 with a B card, to determine their group.

All participating patients gave written consent to join the study, and filled in a data form with general data, basal visual analogue pain score (VAS) and basal Northwick Park Neck Questionnaire (NPQ), in its validated Spanish version [20]. In addition, algometric assessment of the LS insertion was recorded, in the most painful side of the neck. For this purpose a calibrated digital force-algometric gage (Wagner Instrument, Greenwich, US) was employed. The LS scapular insertion was located by means of palpation, and ultrasound confirmation of the proper location was granted. This was the place where the algometer was applied, with a constant increasing pressure, until the patient felt pain and gave a verbal order to stop the test. At that stage, the algometer was immediately cleared from the patient, and the maximum tolerated pressure registered by the device was recorded (Fig. 2). Three consecutive measurements were obtained, and the average value was defined as the pressure pain threshold (PPT). All patients underwent previous mock algometric assessments in their proximal tibia for training purposes.

2.1. Group A: standard physiotherapy protocol

Thirty females and twenty males formed this group. They received a standardized physiotherapy treatment, consisting of 20 sessions of:

- microwave thermotherapy: intensity from 100 to 150 mw, as tolerated, for 10 minutes;
- analgesic TENS currents. Individual setting according to tolerance, generally between 5 to 10 minutes;
- massage of the contractured muscles, including LS, for approximately 10 minutes;
- therapeutic ultrasounds, in pulsatile mode, 1 MHz to 1,5 W/cm², for 10 minutes;
- active exercises and stretching of scapulo-thoracic waist muscles and joints, approximately during 20 minutes.
These sessions were repeated daily (Monday to Friday) for 4 weeks: 20 sessions per patient. Analgesic drugs were taken as per medical indication on acute evaluation, and ceased according to response to physiotherapy. Anti-inflammatory drugs were restricted for these patients, as this was also a requirement in the PNE group.

2.2. Group B: PNE

Thirty-four females and sixteen males were assigned to the PNE group. The treatment consisted on three sessions of PNE performed by a trained physiotherapist (JGN). In our experience, almost universally, patients concentrate their pain in one side of the neck and upper body, depending on the direction of the forces involved in the collision mechanism; although pain is usually bilateral, a more sensitive side is generally identifiable. The PNE treatment was therefore applied in the most painful side of the neck.

The target point was the scapular insertion of the LS: entry point was selected by palpation, approximately 1 cm cranial and 1 cm medial to the medial edge of the scapular spine (Fig. 3). The depth and precise location of the needle was US-guided. In this trial, sterile 25 × 0.16 mm acupuncture needles were used.

Once the target tissue was aimed, the PNE probe (cathode) was connected to the needle, and a galvanic current deployed through it; the circuit was closed with a handle-like anode wielded by the patient. The starting intensity was 2 mAmp, and was increased on a 1 mAmp/sec speed to reach 4 mAmp. At that moment, the current was immediately stopped. This was repeated three times per session, with a resting interval of 1–2 minutes between shocks (Fig. 4).

Each patient received a weekly session for 3 weeks (3 sessions in total). They were requested to avoid taking anti-inflammatory drugs during the treatment, so that the desired inflammatory response would not be undermined. Pure analgesics such as paracetamol or light opioids were not restricted, equally to the standard treatment group. No other interventions such as massage, thermotherapy, electrotherapy or any other were indicated for group B patients.
2.3. Outcome assessment

Five weeks after treatment started, a blinded physiotherapist visited all patients. Current VAS, NPQ and PPT assessment were obtained. The same protocol and device was used for the algometry in both pre- and post-treatment measurements.

In addition, an evaluation of the costs for both groups is also presented in this report.

3. Results

Analysis of data was performed by an independent statistician (JML), who was blinded for the treatment received by each group. All statistical analysis was performed using SPSS v. 18.0 (IBM Corp., Armonk, NY, USA). Significant ($P<0.05$) and trend values are shown. Numeric variables (VAS, NPQ and PPT) are presented as arithmetical mean values ± standard deviations. Comparison of values among treatment groups was performed by Student-t test.

The variation between pre- and post-treatment values for each score was calculated following the formulae:

$$\text{VAS variation} = \frac{(\text{pre VAS} - \text{post VAS})}{\text{pre VAS}} \times 100$$

$$\text{NPQ variation} = \frac{(\text{pre NPQ} - \text{post NPQ})}{\text{pre NPQ}} \times 100$$

$$\text{PPT variation} = \frac{(\text{post PPT} - \text{pre PPT})}{\text{pre PPT}} \times 100$$

Variation results are presented as percentages, and were calculated with non-parametric tests for paired samples.

One hundred patients participated on the study, 50 per group, and none of them was lost during follow-up. Both groups had a comparable distribution of demographics (Table 1). Although a significant difference was found for age, we considered the difference (≥ 5 years) as not clinically relevant, supported by the performance of an age-adjusted analysis that obtained similar conclusions (which has not been displayed to simplify data presentation and reading of the article).

When assessed individually, both techniques showed statistically significant improvement in the VAS scale, NPQ values and PPT tolerance (Table 2).

In regards to VAS variation, the standard group averaged a 49.1% improvement, while the PNE groups scored a mean value of 51.9%, this being a non-statistically significant difference. A similar result was obtained with the NPQ variation: 51.5% mean improvement for the physio group and 49.5% in the PNE group, with no statistical significance. A statistically significant difference was found in favour of the PNE group for the PPT variation; the average reached 56.6%, whilst the standard group mean was 44.4% (Fig. 5).

4. Discussion

AWS has become a challenging problem for clinicians and insurance companies. Large amounts of money are allocated to cover the expenses derived from medical care and sick-leave of the affected [1]. In consequence, the effectiveness and duration of the treatment options are crucial for patients, carers, and insurers.

The use of PNE has rapidly spread across Spain and other European countries. The technique, simple to learn and perform, is being used in the treatment of a number of musculoskeletal entities. It consists in the application of a brief galvanic current into a desired target structure; the placement of the needles is often ultrasound-assisted, when accurate deployment is required. The current generates local NaOH, which acts as a caustic agent, dissolving damaged collagen fibres and other tissue debris. Therefore, the therapeutic effect of PNE relies on a non-thermal ablation of the damaged area, producing a controlled local inflammatory response, with phagocytosis activation and favouring soft-tissue regeneration [10–12]. Further investigations have revealed the underlying molecular routes in the PNE technique [21]. In an animal model, the application of PNE resulted in an increased expression...
Several studies frequently report that regional pain is commonly associated with contracture and/or muscle spasms, especially in the lower extremities; however, some authors have also concluded that a significant clinical improvement can be achieved by using PNE. This finding is supported by the results of several studies, including the one by Ibañez et al. [13], which showed that the use of PNE in the treatment of patellar tendinitis led to a significant reduction in pain compared to the control group. Additionally, a recent study by Moreno et al. [14] found that PNE treatment resulted in a significant reduction in pain and improved mobility compared to the control group.

Although the use of PNE has been demonstrated as a safe and effective treatment for a variety of pain conditions, there is a lack of evidence regarding its efficacy in the treatment of chronic pain conditions. Furthermore, the optimal parameters for PNE treatment have not been clearly defined, which limits the ability of clinicians to provide individualized treatment plans.

The limitations of this study are that it was a retrospective study and that it does not provide information on the long-term efficacy of PNE treatment. Additionally, the sample size of the study was relatively small, which may have limited the statistical power of the analysis. Despite these limitations, our findings suggest that PNE may be a promising treatment option for the management of chronic pain conditions and further research is warranted to explore its potential benefits.

In conclusion, PNE represents a promising treatment option for chronic pain conditions. It is a safe and effective treatment that can be used in conjunction with other interventions to improve pain outcomes. Further research is needed to establish the optimal parameters for PNE treatment and to explore its potential benefits in a wider range of clinical settings.

References:

J. García Naranjo et al. / Orthopaedics & Traumatology: Surgery & Research 103 (2017) 1229–1234

© 2018 Elsevier Masson SAS. Tous droits réservés. - Document téléchargé le 15/12/2018 Il est interdit et illégal de diffuser ce document.
treat, so we can expect a number of future publications in relation of PNE clinical appliances and its effectiveness in the upcoming years.

5. Conclusions

WAD are a challenging problem in Western countries. The costs derived from them urge clinicians and researchers to find cost-effective treatments for those affected. To date, there is little evidence to favour any of the multiple available conservative interventions.

In this trial, PNE has proven to be an effective option for the treatment of AWS. Patients receiving the therapy substantially decreased their pain, pressure-pain threshold and quality of life measures, equally to standardized physiotherapy programmes. Distinguishingly, PNE protocol consists in only 3 application sessions of 15 minutes each one, with no added interventions. The promising clinical results obtained, in addition to the associated cost reduction with the technique, suggest PNE should be considered, if not the only intervention, at least as a crucial part of any AWS conservative protocol.

Ethics and consent to participate

Approval was granted by the Ethics Committee of the CHUIMI Hospital Complex, with protocol number Id:CEIm-CHUIMI-2016/845. A copy of the approval notification has been presented to this journal with the supporting materials. Participants gave written consent to participate.

Author’s contribution

G.N.J. was responsible for the PNE application and physiotherapy team coordination. B.R.S. performed the literature review, wrote and translated into English the final manuscript and is the submitting author. L.F.J.F. was the main protocol designer. L.C.J.M. performed the statistic analysis. S.H.E. was the treating physician for most patients and coordinated the recruiting process. All authors read and approved the final manuscript.

Availability of data and materials

All data and materials generated in this study are available upon request to the submitting author.

Disclosure of interest

The authors declare that they have no competing interest.

Acknowledgements

We want to thank Brent Matthews MD for his help with the linguistic and style corrections to the manuscript.

References


© 2018 Elsevier Masson SAS. Tous droits réservés. - Document téléchargé le 15/12/2018 Il est interdit et ilégal de diffuser ce document.